## Chain Rule: Problems and Solutions

### Chain Rule: Problems and Solutions

Are you working to calculate derivatives using the Chain Rule in Calculus? Let’s solve some common problems step-by-step so you can learn to solve them routinely for yourself.

Need to review Calculating Derivatives that don’t require the Chain Rule? That material is here.

Want to skip the Summary? Jump down to problems and their solutions.

\text{If} && f(x) &= (\text{stuff})^n, \\[8px] \text{then} &&\dfrac{df}{dx} &= n(\text{that stuff})^{n-1} \cdot \dfrac{d}{dx}(\text{that stuff})

\end{align*}

You’ll usually see this written as

$$\dfrac{d}{dx}\left(u^n \right) = n u^{n-1} \cdot \dfrac{du}{dx}$$

The following five problems illustrate.

*Hint:*Recall $\tan^3 x = \big[\tan x\big]^3.$ Also recall that $\dfrac{d}{dx}\tan x = \sec^2 x.$

\text{If} && f(x) &= e^{\text{(stuff)}}, \\[8px] \text{then} &&\dfrac{df}{dx} &= e^{\text{(that stuff)}}\cdot \dfrac{d}{dx}(\text{that stuff})

\end{align*}

You’ll usually see this written as

$$\dfrac{d}{dx}e^u = e^u \cdot \dfrac{du}{dx}$$

The next two problems illustrate.

\text{If} && f(x) &= \sin\text{(stuff)}, \\[8px] \text{then} &&\dfrac{df}{dx} &= \cos\text{(that stuff)}\cdot \dfrac{d}{dx}(\text{that stuff})

\end{align*}

You’ll usually see this written as

$$\dfrac{d}{dx}\sin u = \cos u \cdot \dfrac{du}{dx}$$

$$ — $$

\begin{align*}

\text{If} && f(x) &= \cos\text{(stuff)}, \\[8px] \text{then} &&\dfrac{df}{dx} &= -\sin\text{(that stuff)}\cdot \dfrac{d}{dx}(\text{that stuff})

\end{align*}

You’ll usually see this written as

$$\dfrac{d}{dx}\cos u = -\sin u \cdot \dfrac{du}{dx}$$

$$ — $$

\begin{align*}

\text{If} && f(x) &= \tan\text{(stuff)}, \\[8px] \text{then} &&\dfrac{df}{dx} &= \sec^2\text{(that stuff)}\cdot \dfrac{d}{dx}(\text{that stuff})

\end{align*}

You’ll usually see this written as

$$\dfrac{d}{dx}\tan u = \sec^2 u \cdot \dfrac{du}{dx}$$

The next two problems illustrate.

*This problem combines the Product Rule with the Chain Rule.*

Differentiate $f(x) = \left(x^2 + 1 \right)^7 (3x – 7)^4.$

*This problem requires using the Chain Rule twice.*

Differentiate $f(x) = \cos(\tan(3x)).$

*This problem requires using the Chain Rule three times.*

Differentiate $f(x) = \left(1 + \sin^9(2x + 3) \right)^2.$

*Hint:*Recall that $\sin^9(\cdots) = \big[\sin(\cdots) \big]^9.$

Want access to *all* of our Calculus problems and solutions? Buy full access now — it’s quick and easy!

### ► Do you need immediate help with a particular textbook problem?

Head over to our partners at Chegg and use code “CS5OFFBTS18” (exp. 11/30/2018) to get \$5 off your first month of Chegg Study,
and gain *immediate* access to step-by-step solutions to most textbook problems as well as answers to your specific questions from a math expert.

**Coupon Information**

Code: CS5OFFBTS18

Promotion: \$5 off your first month’s subscription.

Disclaimer: Chegg Study users receive \$5.00 discount off the first
month of a new Chegg Study subscription. Discount expires on 11/30/2018. Offer valid on a monthly subscription. Subscription can be cancelled at any time. Cannot be combined with any other
offer. Valid for one-time use only. Limit one coupon per person. No cash value.

Good ques but make ques a bit tough

Glad you thought these questions are good, and sounds like you’d like some more challenging ones to try for yourself. We’ll aim to add some!

Thanks very much for the comment! 🙂