#  ## Limit at Infinity Problems with Square Roots

### 2 What are your thoughts and questions?

0 Followers

Most reacted comment
3 Comment authors
Subscribe
I'd like to be
Anonymous

root of x ( root of x+c – root x ) at lim x tends to infinite

Matheno

Thanks for asking! (Note that you may need to refresh your browser page for the math below to display properly.)

It turns out there are two strategic moves you have to make to find this limit.

First, as discussed above, any time we see a two square roots subtracted from each other, we automatically multiply by the conjugate
$1= \frac{\sqrt{x+c} + \sqrt{x}}{\sqrt{x+c} + \sqrt{x}}$
So
\begin{align*}
\lim_{x \to \infty}\sqrt{x} \left( \sqrt{x+c} – \sqrt{x}\right) &= \lim_{x \to \infty} \sqrt{x}\left[\left( \sqrt{x+c} – \sqrt{x}\right) \cdot \left( \frac{\sqrt{x+c} + \sqrt{x}}{\sqrt{x+c} + \sqrt{x}}\right) \right] \\[8px]
&= \lim_{x \to \infty}\sqrt{x} \left[ \frac{(x+c) +\sqrt{x+c}\sqrt{x} – \sqrt{x}\sqrt{x+c}-x }{\sqrt{x+c} + \sqrt{x}}\right] \\[8px]
&= \lim_{x \to \infty}\sqrt{x} \left[ \frac{c}{\sqrt{x+c} + \sqrt{x}}\right] \\[8px]
\end{align*}
The other strategic move we need to make is a “trick” we developed earlier : find the largest power of $x$ in the denominator, and then factor it out. Here, that power is $\sqrt{x}$:
\begin{align*}
\phantom{ \lim_{x \to \infty}\sqrt{x} \left( \sqrt{x+c} – \sqrt{x}\right)} &= \lim_{x \to \infty}\sqrt{x} \left[ \frac{c}{\sqrt{x}\left( \sqrt{1+\frac{c}{\sqrt{x}}} + 1\right)}\right] \\[8px]
&= \lim_{x \to \infty}\frac{\sqrt{x}}{\sqrt{x}} \left[ \frac{c}{\sqrt{1+\frac{c}{\sqrt{x}}} + 1}\right] \\[8px]
&= \lim_{x \to \infty} \frac{c}{ \sqrt{1+\frac{c}{\sqrt{x}}} + 1}
\end{align*}
Now, since $\lim_{x \to \infty} \dfrac{c}{\sqrt{x}} = 0,$ when we take the limit we have
\begin{align*}
\phantom{ \lim_{x \to \infty}\sqrt{x} \left( \sqrt{x+c} – \sqrt{x}\right)} &= \frac{c}{ \sqrt{1+\cancelto{0}{ \frac{c}{\sqrt{x}}}} + 1} \\[8px]
\end{align*}
Whew! : )

We hope that helps.

Anonymous

√x√x√x-√x Lim app to infinity is

Matheno

We’ve updated the page to provide the solution to this question as Practice Problem #7 above. It’s a good problem, and we hope we’ve been able to help you (and future students) solve it successfully for yourself.