We’ll solve this two ways.
Method 1: Chain rule and Quotient rule. \begin{align*}
\dfrac{d}{dx}\left[\ln\left(\dfrac{\cos x}{5x} \right) \right] &= \dfrac{1}{\frac{\cos x}{5x}} \cdot \dfrac{d}{dx}\left[\dfrac{\cos x}{5x} \right] \\[8px]
&= \dfrac{5x}{\cos x} \cdot \left[\dfrac{\left(\dfrac{d}{dx}\cos x \right)5x – \cos x \left(\dfrac{d}{dx}5x \right) }{(5x)^2} \right] \\[8px]
&= \dfrac{5x}{\cos x} \cdot \left[\dfrac{(-\sin x)5x – \cos x (5)}{(5x)^2} \right] \\[8px]
&= \dfrac{1}{\cos x} \left[\dfrac{-5x \sin x – 5 \cos x}{5x} \right] \\[8px]
&= \dfrac{-5x\sin x}{5x\cos x} – \dfrac{5 \cos x}{5x \cos x} \\[8px]
&= -\tan x – \dfrac{1}{x} \quad \cmark
\end{align*}
Method 2: Use log property Recall that
Recall that
\begin{align*}
\ln\left(\dfrac{f}{g} \right) &= \ln(f) – \ln(g) \\[8px]
\text{Hence} \phantom{\ln(f*g)}& \\[8px]
\ln\left(\dfrac{\cos x}{5x} \right) &= \ln(\cos x) – \ln(5x)
\end{align*}
Then we can compute the derivative:
\begin{align*}
\dfrac{d}{dx}\left[\ln\left(\dfrac{\cos x}{5x} \right) \right] &= \dfrac{d}{dx}\ln(\cos x) – \dfrac{d}{dx}\ln(5x) \\[8px]
&= \dfrac{1}{\cos x} \cdot \left(\dfrac{d}{dx}\cos x \right) – \dfrac{1}{5x} \cdot \left(\dfrac{d}{dx}5x \right) \\[8px]
&= \dfrac{1}{\cos x} \cdot (-\sin x) – \dfrac{1}{5x} \cdot (5) \\[8px]
&= -\tan x – \dfrac{1}{x} \quad \cmark
\end{align*}
[hide solution]
☕ Buy us a coffee If we've helped, please consider
giving a little something back.
Thank you! 😊