Matheno - Learn Well and Excel

L’Hôpital’s Rule

Free practice problems on L’Hôpital’s Rule in Calculus, each with a complete solution one click away so you can learn how to solve these and be exam-ready.

SUMMARY: L'Hôpital's Rule
Show/Hide L’Hôpital’s Rule
L’Hôpital’s Rule:

$$\text{If } \displaystyle{\lim_{x \to a} \dfrac{f(x)}{g(x)} \to \dfrac{0}{0}} \text{ or } \dfrac{\infty}{\infty}\text{,}$$

$$\text{then: }\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{d}{dx}\left[f(x)\right]}{\frac{d}{dx}\left[g(x)\right]}$$

That is, if you take a limit and it’s in the form  $\dfrac{0}{0}$  or  $\dfrac{\infty}{\infty}$,  then you can take the derivative of the numerator and the derivative of the denominator and find that limit instead.

Warning: Before taking the derivatives, verify that the original limit is in the form  $\dfrac{0}{0}$  or  $\dfrac{\infty}{\infty}$. Otherwise you cannot use L’Hôpital’s Rule.

[collapse]

Question 1: sin & cos oft-used limits
We've been using these limits since the start of the semester. We're now easily going to prove that they're true.
(a) Use L'Hôpital's Rule to show that $\displaystyle{\lim_{x\to 0} \dfrac{\sin x}{x} = 1}$.
(b) Use L'Hôpital's Rule to show that $\displaystyle{\lim_{x\to 0} \dfrac{\cos x - 1}{x} = 0}$.
Show/Hide Solution
Solution SummarySolution (a) DetailSolution (b) Detail
(a) See detailed solution.
(b) See detailed solution.

$$\lim_{x\to 0} \frac{\sin x}{x} \to \frac{0}{0}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to 0} \frac{\sin x}{x} &= \lim_{x\to 0} \frac{\frac{d}{dx}(\sin x)}{\frac{d}{dx}(x)} \\ \\ &= \lim_{x\to 0} \frac{\cos x}{1} \\ \\ &= \frac{1}{1} = 1 \quad \cmark \end{align*}
$$\lim_{x\to 0} \frac{\cos x – 1}{x} \to \frac{1 – 1}{0} \to \frac{0}{0}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to 0} \frac{\cos x – 1}{x} &= \lim_{x\to 0} \frac{\frac{d}{dx}(\cos x – 1)}{\frac{d}{dx}(x)} \\ \\ &= \lim_{x\to 0} \frac{-\sin x}{1} \\ \\ &= \frac{0}{1} = 0 \quad \cmark \end{align*}
[hide solution]
Question 2: Find the limits
Find the requested limits.
(a) $\displaystyle{\lim_{x\to \infty} \dfrac{3x^2 -5x + 2}{4x^2 -6}}$
(b) $\displaystyle{\lim_{x\to \infty} \dfrac{x^2}{(\ln x)^2}}$
(c) $\displaystyle{\lim_{x\to 2} \dfrac{x^2 - 4}{x+ 2}}$
(d) $\displaystyle{\lim_{x\to 0} \dfrac{x}{\tan x}}$
Show/Hide Solution
Solution SummarySolution (a) DetailSolution (b) DetailSolution (c) DetailSolution (d) Detail
(a) $\dfrac{3}{4}$
(b) $\infty$
(c) 0 (cannot use L’Hôpital’s Rule)
(d) 1

$$\lim_{x\to \infty} \frac{3x^2 -5x + 2}{4x^2 -6} \to \frac{\infty}{\infty}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to \infty} \frac{3x^2 -5x + 2}{4x^2 -6} &= \lim_{x\to \infty} \frac{\frac{d}{dx}(3x^2 -5x + 2)}{\frac{d}{dx}(4x^2 -6)} \\ \\ &= \lim_{x\to \infty} \frac{6x -5}{8x} \\ \\ \end{align*} This is also in the form of $\dfrac{\infty}{\infty}$, and so we can apply L’Hôpital’s Rule again:
\begin{align*} \phantom{\lim_{x\to \infty} \frac{3x^2 -5x + 2}{4x^2 -6}} &= \lim_{x\to \infty} \frac{\frac{d}{dx}(6x -5)}{\frac{d}{dx}(8x)} \\ \\ &= \lim_{x\to \infty} \frac{6}{8} \\ \\ &= \frac{6}{8} = \frac{3}{4} \quad \cmark \end{align*}
$$\lim_{x\to \infty} \frac{x^2}{(\ln x)^2} \to \frac{\infty}{\infty}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to \infty} \frac{x^2}{(\ln x)^2} &= \lim_{x\to \infty} \frac{\frac{d}{dx}(x^2)}{\frac{d}{dx}\left[(\ln x)^2\right]} \\ \\ &= \lim_{x\to \infty} \frac{2x}{(2\ln x)\cdot (\frac{1}{x})} \\ \\ &= \lim_{x\to \infty} \frac{2x^2}{(2\ln x)} \end{align*} The last line is again in the form $\dfrac{\infty}{\infty}$, so let’s again apply L’Hôpital’s Rule:
\begin{align*} \phantom{\lim_{x\to \infty} \frac{x^2}{(\ln x)^2}} &= \lim_{x\to \infty} \frac{\frac{d}{dx}(2x^2)}{\frac{d}{dx}(2\ln x)} \\ \\ &= \lim_{x\to \infty} \frac{4x}{2 \cdot (\frac{1}{x})} \\ \\ &= \lim_{x\to \infty} 2x^2 \\ \\ &= \infty \quad \cmark \end{align*}
$$\lim_{x\to 2} \frac{x^2 – 4}{x+ 2} = \frac{0}{4} = 0 \quad \cmark$$ That’s the answer; we cannot use L’Hôpital’s Rule, since this is not in the form of either $\dfrac{0}{0}$ or $\dfrac{\infty}{\infty}$.
(Remember to always check! Using it incorrectly here would lead to a wrong answer.)
$$\lim_{x\to 0} \frac{x}{\tan x} \to \frac{0}{0}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to 0} \frac{x}{\tan x} &= \lim_{x\to 0} \frac{\frac{d}{dx}(x)}{\frac{d}{dx}(\tan x)} \\ \\ &= \lim_{x\to 0} \frac{1}{\sec^2 x} \\ \\ &= \frac{1}{1} = 1 \quad \cmark \end{align*}
[hide solution]
Question 3: More find the limits
Evaluate the following limits.
(a) $\displaystyle{\lim_{x\to 0} \dfrac{x^2}{e^x}}$
(b) $\displaystyle{\lim_{x\to 1} \dfrac{\ln x}{x-1}}$
(c) $\displaystyle{\lim_{x\to 0} \dfrac{5^x - 2^x}{x}}$ [Hint: Recall that $\dfrac{d}{dx}a^x = \ln a \cdot a^x$]
(d) $\displaystyle{\lim_{x \to 0}\dfrac{\cos(2x)-\cos(x)}{x}} $
Show/Hide Solution
Solution SummarySolution (a) DetailSolution (b) DetailSolution (c) DetailSolution (d) Detail
(a) 0 (cannot use L’Hôpital’s Rule)
(b) 1
(c) $\ln 5 – \ln 2$
(d)

$$\lim_{x\to 0} \frac{x}{e^x} = \frac{0}{1} = 0 \quad \cmark$$ That’s the answer; we CANNOT use L’Hôpital’s Rule, since this is not in the form of either $\dfrac{0}{0}$ or $\dfrac{\infty}{\infty}$.
(Remember to always check! Using it incorrectly here would lead to a wrong answer.)
$$\lim_{x\to 1} \frac{\ln x}{x-1} \to \frac{0}{0}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to 1} \frac{\ln x}{x-1} &= \lim_{x\to 1} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x-1)} \\ \\ &= \lim_{x\to 1} \frac{1/x}{1} \\ \\ &= 1 \quad \cmark \end{align*}
$$\lim_{x\to 0} \frac{5^x – 2^x}{x} \to \frac{1-1}{0} \to \frac{0}{0}$$ so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to 0} \frac{5^x – 2^x}{x} &= \lim_{x\to 0} \frac{\frac{d}{dx}(5^x – 2^x)}{\frac{d}{dx}(x)} \\ \\ &=\lim_{x\to 0} \frac{\ln 5 \cdot 5^x – \ln2 \cdot 2^x}{1} \\ \\ &= \frac{\ln 5 \cdot 1 – \ln2 \cdot 1}{1} \\ \\ &= \ln 5 – \ln 2 \quad \cmark \end{align*}
\[\lim_{x \to 0}\dfrac{\cos(2x)-\cos(x)}{x} \to \dfrac{1-1}{0} = \dfrac{0}{0}\] Since this limit is in the form of $\dfrac{0}{0},$ we can apply L’Hôpital’s Rule: \begin{align*} \lim_{x \to 0}\dfrac{\cos(2x)-\cos(x)}{x} &= \lim_{x \to 0}\dfrac{\frac{d}{dx}[\cos(2x)-\cos(x)]}{\frac{d}{dx}(x)} \\[8px] &= \lim_{x \to 0}\dfrac{-2\sin(2x)-(-\sin(x))}{1} \\[8px] &= \dfrac{-2\cancelto{0}{\sin(0)}+\cancelto{0}{\sin(0)}}{1} \\[8px] &= \dfrac{0}{1} = 0 \quad \cmark \end{align*}
[hide solution]
Question 4: Limits in the form 0 · ∞
Often when you're asked about a limit that's initially in the form $0 \cdot \infty$, you can cleverly rewrite it in order to be able to use L'Hôpital's Rule. These questions illustrate.

Evaluate the following limits:
(a) $\displaystyle{\lim_{x\to 0^+} x \ln x}$
(b) $\displaystyle{\lim_{x\to \infty} x^2 e^{-x}}$
Show/Hide Solution
Solution SummarySolution (a) DetailSolution (b) Detail
(a) 0
(b) 0

$$\lim_{x\to 0^+} x \ln x \to 0 \cdot (-\infty)$$ so we cannot use L’Hôpital’s Rule to immediately evaluate this limit.

We can, however, rewrite the first term: $x = \dfrac{1}{1/x}$. We do this because $\displaystyle{\lim_{x\to 0^+} {1/x} \to \infty}$, and so when we consider the entire expression $x \ln x =\dfrac{1}{1/x} \ln x $ we have $$\lim_{x\to 0^+} x \ln x = \lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}} \to \dfrac{-\infty}{\infty}$$ and so we can use L’Hôpital’s Rule.

\begin{align*} \lim_{x\to 0^+} x \ln x &= \lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}} \\ \\ &= \lim_{x\to 0^+} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(\frac{1}{x})} \\ \\ &= \lim_{x\to 0^+} \frac{(\frac{1}{x})}{-\frac{1}{x^2}} \\ \\ &= \lim_{x\to 0^+} (-x) = 0 \quad \cmark \end{align*}
$$\lim_{x\to \infty} x^2 e^{-x} \to \infty \cdot 0$$ so we cannot use L’Hôpital’s Rule to immediately evaluate this limit.

We can, however, rewrite the second term: $e^{-x} = \dfrac{1}{e^x}$. We then have $$\lim_{x\to \infty} x^2 e^{-x} = \lim_{x\to \infty} \frac{x^2}{e^x}$$ which is in the form $\dfrac{\infty}{\infty}$ and so we can use L’Hôpital’s Rule. \begin{align*} \lim_{x\to \infty} x^2 e^{-x} &= \lim_{x\to \infty} \frac{x^2}{e^x} \\ \\ &= \lim_{x\to \infty} \frac{\frac{d}{dx}(x^2)}{\frac{d}{dx}(e^x)} \\ \\ &= \lim_{x\to \infty} \frac{2x}{e^x} \end{align*} This is again in the form $\dfrac{\infty}{\infty}$, so let’s again use L’Hôpital’s Rule:
\begin{align*} \phantom{\lim_{x\to \infty} x^2 e^{-x}} &= \lim_{x\to \infty} \frac{\frac{d}{dx}(2x)}{\frac{d}{dx}(e^x)} \\ \\ &= \lim_{x\to \infty} \frac{2}{e^x} \\ \\ &= 0 \quad \cmark \end{align*}
[hide solution]
Question 5: Limits in the form ∞ – ∞
Sometimes when you're asked about a limit that's initially in the form “$\infty - \infty$,” you can rewrite it in order to be able to use L'Hôpital's Rule. These questions illustrate.

Evaluate the following limits:
(a) $\displaystyle{\lim_{x\to 0}\left(\dfrac{1}{x} - \dfrac{1}{\sin x} \right)}$
(b) $\displaystyle{\lim_{x\to 0}(\cot x - \csc x)}$
(c) $\displaystyle{\lim_{x\to \infty}\left(\sqrt{x^2 +x} -x \right)}$
Show/Hide Solution
Solution SummarySolution (a) DetailSolution (b) DetailSolution (c) Detail
(a) 0
(b) 0
(c) $\dfrac{1}{2}$

$$\lim_{x\to 0}\left(\frac{1}{x} – \frac{1}{\sin x} \right) \to \infty – \infty$$ so we cannot immediately use L’Hôpital’s Rule.

We can, however, put everything over a common denominator, and then examine that limit: \begin{align*} & \hphantom{= \lim_{x\to 0}\left(\frac{-\sin x}{\cos x + (\cos x – x \sin x)} \right)} \\ \lim_{x\to 0}\left(\frac{1}{x} – \frac{1}{\sin x} \right) &= \lim_{x\to 0}\left(\frac{\sin x – x}{x \sin x} \right) \\ \\ \end{align*} This limit is in the form $\dfrac{0}{0}$, and so we can apply L’Hôpital’s Rule: \begin{align*} \hphantom{\lim_{x\to 0}\left(\frac{1}{x} – \frac{1}{\sin x} \right)} & \hphantom{= \lim_{x\to 0}\left(\frac{-\sin x}{\cos x + (\cos x – x \sin x)} \right)} \\ &= \lim_{x\to 0}\left(\frac{\frac{d}{dx}(\sin x – x)}{\frac{d}{dx}(x \sin x)} \right) \\ \\ &= \lim_{x\to 0}\left(\frac{\cos x – 1}{\sin x + x \cos x} \right) \end{align*} This limit is again in the form $\dfrac{0}{0}$, so let’s applyL’Hôpital’s Rule again:
\begin{align*} \phantom{\lim_{x\to 0}\left(\frac{1}{x} – \frac{1}{\sin x} \right)} &= \lim_{x\to 0}\left(\frac{\frac{d}{dx}(\cos x – 1)}{\frac{d}{dx}(\sin x + x \cos x)}\right) \\ \\ &= \lim_{x\to 0}\left(\frac{-\sin x}{\cos x + (\cos x – x \sin x)} \right) \\ \\ &= \frac{0}{1 + (1 -0)} = 0 \quad \cmark \end{align*}
$$\lim_{x\to 0}(\cot x – \csc x) = \lim_{x\to 0}(\frac{\cos x}{\sin x} – \frac{1}{\sin x}) \to \infty – \infty$$ so we cannot immediately use L’Hôpital’s Rule.

We can, however, put everything over a common denominator, and then examine that limit: \begin{align*} \lim_{x\to 0}(\cot x – \csc x) &= \lim_{x\to 0}\left(\frac{\cos x}{\sin x} – \frac{1}{\sin x}\right) \\ \\ &= \lim_{x\to 0}\left(\frac{\cos x -1}{\sin x} \right) \end{align*} This limit is in the form $\dfrac{0}{0}$, and so we can apply L’Hôpital’s Rule: \begin{align*} \phantom{\lim_{x\to 0}(\cot x – \csc x) } &= \lim_{x\to 0}\left(\frac{\frac{d}{dx}(\cos x -1)}{\frac{d}{dx}(\sin x)}\right) \\ \\ &= \lim_{x\to 0}\left(\frac{-\sin x }{\cos x}\right) \\ \\ &= \frac{0}{1} = 0 \quad \cmark \end{align*}
$$\lim_{x\to \infty}\left(\sqrt{x^2 +x} -x \right) \to \infty – \infty$$ so we cannot use L’Hôpital’s Rule.

Let’s proceed as we would have when we first studied limits, and rationalize the expression: \begin{align*} \lim_{x\to \infty}\left(\sqrt{x^2 + x} -x \right) &= \lim_{x\to \infty}\left(\sqrt{x^2 + x} -x \right)\cdot \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x} \\ \\ &= \lim_{x\to \infty}\frac{(x^2 +x) -x^2}{ \sqrt{x^2 +x} + x} \\ \\ &= \lim_{x\to \infty}\frac{x}{\sqrt{x^2 +x} + x} \end{align*} While this limit is now in the form $\frac{\infty}{\infty}$ and so we could apply L’Hôpital’s Rule, doing so turns rather messy. It’s thus easier to continue to proceed as we did when first studying limits, and divide each term by the largest power that appears in the denominator, x: \begin{align*} \hphantom{\lim_{x\to \infty}\left(\sqrt{x^2 + x} -x \right)} & \hphantom{ \lim_{x\to \infty}\left(\sqrt{x^2 + x} -x \right)\cdot \frac{\sqrt{x^2 + x} + x}{\sqrt{x^2 + x} + x}} \\ &= \lim_{x\to \infty}\frac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2 -x}{x^2}} + \dfrac{x}{x}} \\ \\ &= \lim_{x\to \infty}\frac{1}{\sqrt{1 – \frac{1}{x} } + 1} \\ \\ &= \frac{1}{\sqrt{1 + 0} + 2} = \frac{1}{2} \quad \cmark \end{align*}

Note that we actually didn’t use L’Hôpital’s Rule in this problem. Just because we’ve introduced a new tool, don’t forget the old approaches. Sometimes they’re easier to use.
[hide solution]
Question 6: Limits of the form 0^0, 1^∞, ∞^0
If you encounter a limit in the form $0^0$, $1^\infty$, or $\infty^0$, then:
  1. Set $y = $[the function you're given];
  2. Take the $\ln$ of both sides of that equation;
  3. Find the limit of $\ln y$ using L'Hôpital's Rule as necessary;
  4. Return to the limit of the original function by recalling that $y = e^{\ln y}$.
The following problems illustrate. Find the requested limits:
(a) $\displaystyle{\lim_{x\to \infty}x^{1/x}}$
(b) $\displaystyle{\lim_{x\to 0^+}x^x}$
(c) $\displaystyle{\lim_{x\to 0^+}(\sin x)^{\tan x}}$
(d) $\displaystyle{\lim_{x\to \infty}\left(1 + \frac{1}{x} \right)^x}$ [Note: This is a famous limit that can be used to define $e$.]
Show/Hide Solution
Solution SummarySolution (a) DetailSolution (b) DetailSolution (c) DetailSolution (d) Detail
(a) 1
(b) 1
(c) 1
(d) $e$

$$\lim_{x \to \infty}x^{1/x} \to \infty^0$$ so we cannot use L’Hôpital’s Rule immediately. Let’s follow the steps outlined above:

1. $y = x^{1/x}$.
2. $\ln y = \ln x^{1/x} = \dfrac{1}{x} \ln x$
3. \begin{align*} \lim_{x\to \infty}\ln y &= \lim_{x \to \infty}\frac{\ln x}{x} \end{align*} This limit is in the form $\frac{\infty}{\infty}$, and so we can apply L’Hôpital’s Rule:
\begin{align*} \phantom{\lim_{x\to \infty}\ln y } &=\lim_{x \to \infty}\frac{ \frac{d}{dx}(\ln x)}{\frac{d}{dx}(x)} \\ \\ &=\lim_{x \to \infty}\frac{\frac{1}{x}}{1} = 0 \\ \\ \lim_{x\to \infty}\ln y &= 0 \end{align*}
4. Recall that $y = e^{\ln y}$. Then \begin{align*} \lim_{x \to \infty}y &= \lim_{x \to \infty}e^{\ln y} &&\text{[We found in Step 3 that $\lim_{x\to \infty}\ln y = 0$]} \\ \\ &= e^0 = 1 \\ \\ \lim_{x\to \infty}x^{1/x} &= 1 \quad \cmark \end{align*}
$$\lim_{x\to 0^+}x^x \to 0^0$$ so we cannot use L’Hôpital’s Rule immediately. Let’s follow the steps outlined above:

1. $y = x^x$.
2. $\ln y = \ln x^x = x \ln x$
3. We found $\displaystyle{ \lim_{x\to 0^+} x \ln x}$ in a problem above. . . but for completeness will find it again here. The limit is in the form $0 \cdot -\infty$, and we can rewrite to be in the form $-\dfrac{\infty}{\infty}$ by noting that $x = \dfrac{1}{1/x}$: \begin{align*} \lim_{x\to 0^+} \ln y &= \lim_{x\to 0^+} x \ln x \\ \\ &= \lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}} \end{align*} This limit is in the form $-\dfrac{\infty}{\infty}$, and so we can use L’Hôpital’s Rule: \begin{align*} \phantom{\lim_{x\to 0^+} \ln y} &= \lim_{x\to 0^+} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(\frac{1}{x})} \\ \\ &= \lim_{x\to 0^+} \frac{(\frac{1}{x})}{-\frac{1}{x^2}} \\ \\ &= \lim_{x\to 0^+} (-x) = 0 \\ \\ \lim_{x\to 0^+} \ln y &= 0 \end{align*} 4. Recall that $y = e^{\ln y}$. Then \begin{align*} \lim_{x\to 0^+}y &= \lim_{x\to 0^+}e^{\ln y} &&\text{[We found in Step 3 that $\lim_{x\to 0^+}\ln y = 0$]} \\ \\ &= e^0 = 1 \\ \\ \lim_{x\to 0^+}x^x &= 1 \quad \cmark \end{align*}
$$\lim_{x\to 0^+}(\sin x)^{\tan x} \to 0^0$$ so we cannot use L’Hôpital’s Rule immediately. Let’s follow the steps outlined above:

1. $y = (\sin x)^{\tan x}$.
2. $\ln y = \ln (\sin x)^{\tan x} = \tan x \cdot \ln (\sin x)$
3. \begin{align*} \lim_{x\to 0^+} \ln y &= \lim_{x\to 0^+} \left( \tan x \cdot \ln (\sin x) \right) \end{align*} This limit is in the form $0 \cdot (-\infty)$, but we can rewrite it to put it in the form $-\dfrac{\infty}{\infty}$ by noting that $\tan x = \dfrac{1}{\cot x}$: \begin{align*} \phantom{\lim_{x\to 0^+} \ln y} &= \lim_{x\to 0^+} \frac{\ln (\sin x) }{\cot x} \\ \\ \end{align*} This limit is in the form $-\dfrac{\infty}{\infty}$, and so we can use L’Hôpital’s Rule: \begin{align*} \phantom{ \lim_{x\to 0^+} \ln y} &= \lim_{x\to 0^+} \frac{\frac{d}{dx}(\ln (\sin x) )}{\frac{d}{dx}(\cot x)} \\ \\ &= \lim_{x\to 0^+} \frac{\left(\frac{1}{\sin x} \cdot \cos x \right)}{-\csc^2 x} \\ \\ &= \lim_{x\to 0^+}\left( \frac{1}{\sin x} \cdot \cos x \right)(-\sin^2 x) \\ \\ &= \lim_{x\to 0^+}\left(-\cos x \, \sin x \right)\\ \\ &= -1 \cdot 0 \\ \\ \lim_{x\to 0^+} \ln y &= 0 \end{align*} 4. Recall that $y = e^{\ln y}$. Then \begin{align*} \lim_{x\to 0^+}y &= \lim_{x\to 0^+}e^{\ln y} &&\text{[We found in Step 3 that $\lim_{x\to 0^+}\ln y = 0$]} \\ \\ &= e^0 = 1 \\ \\ \lim_{x\to 0^+}(\sin x)^{\tan x} &= 1 \quad \cmark \end{align*}
$$\lim_{x\to \infty}\left(1 + \frac{1}{x} \right)^x \to 1^\infty$$ so we cannot use L’Hôpital’s Rule immediately. Let’s follow the steps outlined above:

1. $y = \left(1 + \frac{1}{x} \right)^x$
2. $\ln y = \ln \left(1 + \frac{1}{x} \right)^x = x \ln \left(1 + \frac{1}{x} \right)$
3. \begin{align*} \lim_{x\to \infty}\ln y &= \lim_{x\to \infty}\left[x \ln \left(1 + \frac{1}{x} \right) \right] \end{align*} This limit is in the form $\infty \cdot 0$, but we can rewrite it to put it in the form $\frac{0}{0}$ by noting that $x = \frac{1}{1/x}$: \begin{align*} \phantom{ \lim_{x\to \infty}\ln y} &= \lim_{x\to \infty}\frac{ \ln \left(1 + \frac{1}{x} \right)}{\frac{1}{x}} \\ \\ \end{align*} This limit is in the form $\frac{0}{0}$, and so we can apply L’Hôpital’s Rule: \begin{align*} \phantom{ \lim_{x\to \infty}\ln y} &= \lim_{x\to \infty}\frac{ \frac{d}{dx}\left( \ln \left(1 + \frac{1}{x} \right) \right)}{\frac{d}{dx} \left( \frac{1}{x}\right)} \\ \\ &= \lim_{x\to \infty}\frac{\dfrac{1}{\left(1 + \frac{1}{x}\right) }\cdot \left(-\dfrac{1}{x^2}\right)}{\left(-\dfrac{1}{x^2}\right)} \\ \\ &= \lim_{x\to \infty}\dfrac{1}{\left(1 + \frac{1}{x}\right) } \\ \\ \lim_{x\to \infty}\ln y &= 1 \end{align*} 4. Recall that $y = e^{\ln y}$. Then \begin{align*} \lim_{x\to \infty}y &= \lim_{x\to \infty}e^{\ln y} &&\text{[We found in Step 3 that $\lim_{x\to \infty}\ln y = 1$]} \\ \\ &= e^1 = e \\ \\ \lim_{x\to \infty} \left(1 + \frac{1}{x} \right)^x &= e \quad \cmark \end{align*}
[hide solution]

Buy us a coffee If we've helped, please consider
giving a little something back.
Thank you! 😊



We'd love to hear:
  • What questions do you have about the solutions above?
  • Which ones are giving you the most trouble?
  • What other derivative problems are you trying to work through for your class?
If you post on our Forum, we'll do our best to help!
As of September 2022, we’re using our Forum for comments and discussion of this topic, and for any math questions. We’d love to see you there! Please tap to visit our Forum: community.matheno.com.
We'd appreciate your feedback! 😊
How helpful?