Matheno - Learn Well and Excel

Related Rates

Calculus Related Rates Problem:
At what rate does the angle change as a ladder slides away from a house?

A 10-ft ladder leans against a house on flat ground. The house is to the left of the ladder. The base of the ladder starts to slide away from the house at 2 ft/s. At what rate is the angle between the ladder and the ground changing when the base is 8 ft from the house?


Calculus Solution

To solve this problem, we will use our standard 4-step Related Rates Problem Solving Strategy.
Ladder leans against a wall. Its angle with the ground changes as the ladder slides away.

1. Draw a picture of the physical situation.
See the figure. We’ve labeled the angle $\theta$ that the ladder makes with the ground, since the problem is asking us to find the rate at which that angle changes, $\dfrac{d\theta}{dt}$, at a particular moment β€” when $x = 8$. Recall also that $\dfrac{dx}{dt} = 2$ ft/s. We’ll use these values at the end of our solution.

2. Write an equation that relates the quantities of interest.
B. To develop your equation, you will probably use . . . a trigonometric function (like $\cos{\theta}$ = adjacent/hypotenuse).
This is the hardest part of Related Rates problem for most students initially: you have to know how to develop the equation you need, how to pull that “out of thin air.” By working through these problems you’ll develop this skill. The key is to recognize which of the few sub-types of problem it is; we’ve listed each on our Related Rates page.

In this problem, the diagram above immediately suggests that we’re dealing with a right triangle. Furthermore, we need to related the rate at which $\theta$ is changing, $\dfrac{d\theta}{dt}$, to the rate at which x is changing, $\dfrac{dx}{dt}$, and so we first need to write down an equation that somehow relates $\theta$ and x. Such a relation must be trigonometric.

Specifically, we notice that x is the side of the triangle that is adjacent to the angle. Furthermore, the hypotenuse of the triangle remains constant throughout the problem, since the ladder’s length is always 10 ft. Hence at every moment:
$$\cos{\theta} = \frac{x}{10}$$
That’s it. That’s the key relationship that will allow us to complete the solution.

β˜• Buy us a coffee We're working to add more,
and would appreciate your help
to keep going! 😊

3. Take the derivative with respect to time of both sides of your equation. Remember the chain rule.

\begin{align*}
\frac{d}{dt} \cos{\theta} &= \frac{d}{dt} \left( \frac{x}{10} \right) \\ \\
&= \frac{1}{10} \frac{d}{dt}(x) \\ \\
-\sin{\theta}\, \frac{d\theta}{dt} &= \frac{1}{10}\frac{dx}{dt}
\end{align*}

Open to read why the d(theta)/dt and dx/dt are there.
Are you wondering why the $\dfrac{d\theta}{dt}$ and $\dfrac{dx}{dt}$ appear? The answer is the Chain Rule.

While the derivative of $\cos \theta$ with respect to angle $\theta$ is
$$\dfrac{d}{d\theta}\cos \theta = -\sin \theta,$$
the derivative of $\cos \theta$ with respect to time t is
$$\dfrac{d}{dt}\cos \theta = -\sin \theta \,\dfrac{d\theta}{dt}.$$
Similarly, while the derivative of x with respect to x is
$$\dfrac{d}{dx}x = 1,$$
the derivative of x with respect to time t is
$$\dfrac{d}{dt}x = \dfrac{dx}{dt}.$$
(Recall that that rate is $\dfrac{dx}{dt} = 2$ ft/s in this problem.)

Remember that $\theta$ and x are both functions of time t: the angle changes as time passes and the ladder’s x-position changes as the ladder slides down the wall. We could have captured this time-dependence explicitly by writing our relation as
$$ \cos \theta(t) = \dfrac{x(t)}{10}$$
to remind ourselves that both $\theta$ and x are functions of time t. Then when we take the derivative,
\begin{align*}
\frac{d}{dt}\cos \theta(t) &= \frac{d}{dt}\left( \dfrac{x(t)}{10}\right) \\ \\
\left(-\sin \theta(t)\right) \dfrac{d\theta(t)}{dt}&= \dfrac{1}{10}\dfrac{dx(t)}{dt}
\end{align*}

[Recall $\dfrac{dx(t)}{dt} = 2$ ft/s, and we’re looking for $\dfrac{d\theta(t)}{dt}$ at the moment when x = 8 ft.]

Most people find that writing the explicit time-dependence $\theta(t)$ and x(t) annoying, and so just write $\theta$ and x instead. Regardless, you must remember that both $\theta$ and x depend on t, and so when you take the derivative with respect to time the Chain Rule applies and you have the $\dfrac{d\theta}{dt}$ and $\dfrac{dx}{dt}$ terms.

[collapse]

4. Solve for the quantity you’re after.

Let’s solve the preceding equation for $\dfrac{d\theta}{dt}$:
\begin{align*}
-\sin{\theta}\, \frac{d\theta}{dt} &= \frac{1}{10}\frac{dx}{dt} \\ \\
\frac{d\theta}{dt} &= -\frac{1}{\sin{\theta}}\frac{1}{10}\frac{dx}{dt}
\end{align*}
To complete the solution, we need to know the value of $\sin \theta$ at the moment when x = 8 ft.


Begin subproblem to find $\sin \theta$ at the moment of interest.
You can use any of these three approaches:
Approach #1:
Looking back at the figure, we see that
$$ \sin \theta = \dfrac{y}{10}$$
Ladder leans against a wall and makes angle theta with the floor
Next, recognize that at this instant the triangle is a “3-4-5 right triangle,” with the actual proportions 6-8-10. Hence y = 6 ft at this instant, and so
$$\sin\theta = \dfrac{y}{10} = \dfrac{6}{10} = \dfrac{3}{5}$$
Approach #2:
Looking back at the original figure, we see that
$$ \sin \theta = \dfrac{y}{10}$$
So we need to know the value of y when x = 8 ft. The Pythagorean theorem as applied to the triangle lets us solve for y at this instant:
\begin{align*}
x^2 + y^2 &= 10^2 \\[4px] 8^2 + y^2 &= 10^2 \\[4px] 64 + y^2 &= 100 \\[4px] y^2 &= 100 – 64 = 36 \\[4px] y &= 6
\end{align*}
Hence at this instant
$$\sin\theta = \dfrac{y}{10} = \dfrac{6}{10} = \dfrac{3}{5}$$
Approach #3.
Recall the trig identity $\sin^2 \theta + \cos^2 \theta = 1$:
\begin{align*}
\sin^2 \theta + \cos^2 \theta &= 1 \\[4px] \sin^2 \theta + \left(\frac{8}{10} \right)^2 &= 1 \\[4px] \sin^2 \theta + \left(\frac{4}{5} \right)^2 &= 1 \\[4px] \sin^2 \theta + \frac{16}{25} &= 1 \\[4px] \sin^2 \theta &= 1 – \frac{16}{25} = \frac{9}{25} \\[4px] \sin \theta = \frac{3}{5}
\end{align*}
End subproblem.


We can now substitute values into our preceding equation:
$$\frac{d\theta}{dt} = -\frac{1}{\sin{\theta}}\frac{1}{10}\frac{dx}{dt}$$
We haveΒ  $\sin \theta = \dfrac{3}{5}$ Β andΒ  $\dfrac{dx}{dt} =2$:
\begin{align*}
\frac{d\theta}{dt} & = -\frac{1}{\sin{\theta}}\frac{1}{10}\frac{dx}{dt} \\ \\
&= \, -\frac{1}{3/5}\frac{1}{10}(2)\\ \\
&=\, – \frac{5}{3}\frac{1}{10}(2)\\ \\
&= \, – \frac{1}{3} \text{ rad/s} \quad \cmark
\end{align*}
That’s the answer. The negative value indicates that the angle is decreasing at the ladder slides down the wall, as we expect.


Web-based homework warning icon
Caution: IF you are using a web-based homework system and the question asks,

At what rate does the angle decrease?

then the system has already accounted for the negative sign and so to be correct you must enter a POSITIVE VALUE: $\boxed{\dfrac{1}{3}} \, \dfrac{\text{rad}}{\text{s}} \quad \checkmark$


β˜• Buy us a coffee If we've helped, please consider
giving a little something back.
Thank you! 😊

Return to Related Rates Problems


Small owl logo
Want access to all of our Calculus problems and solutions? Just visit our Calculus Home screen. It’s all free. (Why? Just because we’re educators who believe you deserve the chance to develop a better understanding of Calculus for yourself, and so we’re aiming to provide that. We hope you’ll take advantage!)

And if you have a Calculus question, please pop over to our Forum and post.Β  Related rates problems can be especially challenging to set up.Β  If you could use some help, please post and we’ll be happy to assist!



These days we use our Forum for comments and discussion of this topic, and for any math questions. It’s also free for you to use, and if you’d like you can post anonymously with any username you choose. We’d love to see you there and help! Please tap to visit our Forum: community.matheno.com.
We'd appreciate your feedback! 😊
How helpful?

What are your thoughts or questions?

Subscribe
I'd like to be
6 Comments
newest
oldest most voted
Inline Feedbacks
View all comments
Anonymous
1 year ago

I know its a few years later but why do we use x as a variable when developing the cos (theta) equation for developing the equation. Don’t we know x is 8? Or is it because its not a constant?

Anonymous
3 years ago

What if they only give the rate at which the upper end (point where ladder meets wall) slides down and not the rate at which the bottom moves. Specifically what rate does theta (angle between ground and base of ladder) change when the top of a 30 ft long ladder slides down a wall at .5ft/s and is 18 ft above the ground at that instant?

Anonymous
3 years ago

this is poggers πŸ™‚

Julio Ernesto Argueta
3 years ago

COULD IT WORK WITH TANGENT

This site is free?!?

We don't charge for anything on this site, we don't run ads, and we will never sell your personal information.

We're passionate educators with a goal:

Provide high-quality, interactive materials to dedicated learners everywhere in the world, regardless of ability to pay,
so they (you!) can learn well and excel.

We're working to develop more.
If you'd like to give back and help support our efforts, all we ask is that you perhaps

β˜• Buy us a coffee We're working to add more,
and would appreciate your help
to keep going! 😊