Trig Formulas and Identities
Handy Table of Trig Formulas and Identities
Relationships Among Trig Functions
\begin{align*}
 \csc x &= \frac{1}{\sin x} & \sec x &= \frac{1}{\cos x} \\ \\
 \tan x &= \frac{\sin x}{\cos x} & \cot x &= \frac{\cos x}{\sin x}
 \end{align*}
 
 \begin{align*}
 \sin^2 x + \cos^2 x &= 1 \\
 1 + \cot^2 x &= \csc^2 x \\
 1 + \tan^2 x &= \sec^2 x
 \end{align*}
Negative Angles
\begin{align*}
 \sin(-x) &= -\sin x & \csc(-x) &= -\csc x\\
 \cos(-x) &= \cos x & \sec(-x) &= \sec x \\
 \tan(-x) &= -\tan x & \cot(-x) &= -\cot x
 \end{align*}
Addition and Subtraction Formulas
\begin{align*}
 \sin(x+y) &= \sin x \cos y + \sin y \cos x \\ \\
 \sin(x – y) &= \sin x \cos y – \sin y \cos x \\  \\
 \cos(x+y) &= \cos x \cos y – \sin x \sin y \\ \\
 \cos(x – y) &= \cos x \cos y + \sin x \sin y  \\ \\
 \tan(x+y) &= \frac{\tan x + \tan y}{1 – \tan x \tan y} \\ \\
 \tan(x-y) &= \frac{\tan x – \tan y}{1 + \tan x \tan y}
 \end{align*}
Double-Angle Formulas
\begin{align*}
 \sin 2x &= 2 \sin x \cos x \\ \\
 \cos 2x &= \cos^2 x – \sin^2 x = 1 – 2\sin^2 x = 2\cos^2 x – 1 \\ \\
 \tan 2x &= \frac{2\tan x}{1 – \tan^2 x}
 \end{align*}
Half-Angle Formulas
(useful for $\sin^2 x$ & $\cos^2 x$)
 \begin{align*}
 \sin^2 x &= \frac{1}{2} – \frac{1}{2}\cos 2x \\ \\
 \cos^2 x &= \frac{1}{2} + \frac{1}{2}\cos 2x
 \end{align*}



 
 